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Abstract

With time reversal symmetry a Dirac operator has a vanishing index and a
Chern number. We show that we can nevertheless define a nontrivial Z2 index
as well as a corresponding topological invariant given by gauge field, which
implies that such a Dirac operator is topologically nontrivial.

PACS numbers: 03.65.Vf, 02.40.−k, 11.15.Tk, 73.43.−f

The idea of topological invariants has been successfully applied to various fields in physics.
In gauge theories they are used to classify topological configurations such as monopoles and
instantons. When couplings with chiral fermions are introduced, there arise interesting field
theoretical phenomena such as chiral anomaly and gauge anomaly [1]. The chiral anomaly
[1] is known to have an intimate relationship with the index theorem [2] which tells us that
the index of the Dirac operator coincides with the second Chern number. The gauge anomaly
also has a topological origin, since it is related to the chiral anomaly in six dimensions [3].

In condensed matter physics, it is well known that the plateaus of the quantum Hall effect
(QHE) are classified by the first Chern number [4, 5]. Recently, a novel topological number
has been proposed by Kane, Mele and Fu [6–8] for the quantum spin Hall effect (QSHE)
[6–9]. It is invariant only modulo 2, and is often called the Z2 invariant. Here, time reversal
symmetry is the key difference between the QHE and the QSHE. Remarkably, the QSHE has
recently been observed in several experiments [10–13].

The formula of the Z2 invariant proposed by Fu and Kane [8] is, roughly speaking, ‘half’
the first Chern number. Therefore, it is very useful [14] for numerical calculations if we utilize
the techniques of computing the Chern number in the lattice gauge theories [15]. Besides such
practical applications, it is of fundamental importance, since it could be a topological invariant
in ‘mod 2 index theorem’ [16]. Therefore, if we find a corresponding analytical invariant, we
can obtain a simple formula of a Z2 index theorem for a (pseudo-real) Dirac operator.

In this paper, we investigate analytical and topological invariants associated with a Dirac
operator with time reversal invariance. We first study its spectral properties in Euclidean space
and define a Z2 index of the Dirac operator. We then propose a topological invariant which is
a generalization of the Fu–Kane formula, and infer that it coincides with the Z2 index.
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We begin by recalling the time reversal transformation of Dirac fermions in d = 2n + 2
(n = 0, 1, . . .) dimensional Minkowski space time. It is defined by ψ(t, x) → T ψ(−t,x),
where T is an anti-unitary operator, T ≡ �γ �GK, with �γ being a product of some γ matrices,
�G a generator of a gauge group G, and K the operator of taking complex conjugate. For the
Lagrangian density L(t, x) = ψ̄(t, x)i�D(t,x)ψ(t, x) to transform as L(t, x) → L(−t,x)

under time reversal, we see T i�D(t,x)T −1 = i�D(−t,x), from which it follows that

T γ μT −1 = γμ, T Aμ(t, x)T −1 = Aμ(−t,x), (1)

where the metric is gμν = diag(1,−1, . . . ,−1). The �5 matrix anti-commuting with the
Dirac operator is given by �5 = id/2−1γ 0γ 1 · · · γ d−1. This definition directly leads to
T �5T −1 = −�5 for d = 4n + 2 and = +�5 for d = 4n + 4.

T has the following two possibilities: T 2 = ±1, depending on �2
γ = ±1 and �2

G = ±1.
The former is determined solely by the space-time dimension d: in d = 2, for example, we
can choose γ 0 = σ 2 and γ 1 = iσ 1. Since these are imaginary, K(γ 0, γ 1)K−1 = (−γ 0,−γ 1),
we see that �γ = −iγ 1 = σ 1, and therefore, �2

γ = 1. In general, we have �2
γ = 1 for

d = 0, 2 + 8n, and �2
γ = −1 for d = 4, 6 + 8n.

To discuss the index of the Dirac operator with time reversal invariance, we switch from
Minkowski space to Euclidean space1. It should be noted that a Euclidean version of the
time reversal transformation is not so obvious, since it includes the operator K. Here, we
define Euclidean space by rotating all the spatial coordinates xj (j = 1, . . . , d − 1) onto
the imaginary axes via xj = iyj , whereas x0 = yd . As we shall see, this enables us to
relate a Z2 index of the Dirac operator with a topological invariant2. The metric becomes
in this case gμν = δμν . Correspondingly, the γ̃ matrices are introduced via γ j = iγ̃ j

and γ 0 = γ̃ d which become Hermitian γ̃ μ† = γ̃ μ, and the gauge potential Aμ(y) via
Aj(x) = −iAj (y) and A0(x) = Ad(y). Then, the Dirac operator can be denoted as
i�D(x) = i�D(y) ≡ iγ̃ μ(∂yμ − iA(y)) which we regard as Hermitian (i�D(y))† = i�D(y).
The transformation law under time reversal becomes

T γ̃ μT −1 = γ̃ μ, T Aμ(y)T −1 = Aμ(−y), (2)

which follows from the same transformation law (1) but with the Euclidean metric mentioned
above. Therefore, the Dirac operator transforms as

T i�D(y)T −1 = i�D(−y). (3)

Note that this transformation is for a flat space: if we consider a curved space, it should be
modified suitably, as we shall see. Other key symmetry is chiral symmetry described by

�5i�D(y) + i�D(y)�5 = 0. (4)

The Z2 index discussed in this paper is involved in the case with both of the conditions

T 2 = −1, (5a)

T �5T −1 = −�5 (5b)

1 Intrinsic topological nature of the system can also be proved in Minkowski space like spectral flow and chiral
anomaly. However, their topological characterization can be best achieved in Euclidean space compactified by
suitable boundary conditions.
2 Even in conventional imaginary-time Euclidean space, we can also define a Z2 index of the Dirac operator similarly
in the text: time reversal invariance is given by T �D(x)T −1 = −�D(x), where �D(x) is the Hermitian Dirac operator
and x denotes the coordinates of imaginary-time Euclidean space. By the use of the anti-commutativity of �D and �5,
we see that a similar discussion of the quartet formation at nonzero energies can apply. However, in this case, it is
not possible, as far as we study, to find a corresponding topological invariant.
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Figure 1. Schematic illustration of the spectrum of the Dirac operator in the case NK = 2 (two
zero-mode doublets) on a compact manifold M. The nonzero-mode quartet can be obtained by the
operation of T and/or �5. The chirality ± is shown for the zero-mode eigenstates.

fulfilled. The former ensures that the eigenstates are always doubly degenerate, which is
referred to as the Kramers doublet. The latter claims that the zero-mode Kramers doublet have
opposite chiralities. These conditions give some constraints: equation (5b) is valid only in
d = 4n + 2, and equation (5a) imposes �2

G = −1 for d = 8n + 2 and �2
G = +1 for d = 8n + 6.

Typical example in the former case is �G = 1N ⊗ iτ 2 ≡ J2, whereas in the latter case, a
convenient but nontrivial choice may be �G = 1N ⊗ τ 1 ≡ J1,3 provided that the dimension of
the representation of the gauge group G is 2N .4 The transformation law of gauge potentials is
thus defined by

Aμ(−y) =
{

J2A∗
μ(y)J−1

2

J1A∗
μ(y)J−1

1

for d = 8n +

{
2
6

. (6)

For a time reversal invariant Dirac operator discussed so far, we shall define a Z2 index.
Let ϕk(y) be an eigenstate of i�D:

i�D(y)ϕk(y) = εkϕk(y).

Then, equation (3) ensures that ϕKk(y) ≡ T ϕk(−y) is also an eigenstate of i�D(y) with the
same eigenvalue εk . Here, condition (5a) plays a vital role in the orthogonality between ϕk and
ϕKk . It thus turns out that all eigenstates are doubly degenerate, called Kramers doublets as
mentioned above, which we denote as �k(y) = (ϕk(y), ϕKk(y)). The spectrum is illustrated
in figure 1.

Let us concentrate on the zero-mode eigenstates, �0,α (α = 1, . . . , NK). Since the
Dirac operator anti-commutes with �5, the zero modes can be chosen to be eigenstates of the
chirality. Suppose �5ϕ0,α = +ϕ0,α . Then, we see �5ϕK0,α = −ϕK0,α because of equation (5b).
Namely, at the zero energy, each Kramers doublet is composed of two states with opposite

3 This choice of J1 is just for a practical reason: it allows us to give a nontrivial example of models by the use of
equation (9). As far as symmetry is concerned, we can choose J1 = 1. (See footnote 5.).
4 In the d = 8n + 6 case, odd-dimensional representations may be possible. However, for simplicity, we assume that
the dimension is even, since it enables us to have nontrivial models that belong to the nontrivial element of Z2, as we
shall see momentarily.
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Figure 2. An example of a two-dimensional manifold M. yj denotes the time reversal invariant
points. The square represents S2 if the boundary is regarded as one point. In this case, time reversal
invariant points are just two, y1 and y2(= y3 = y4). If the two parallel boundaries are pasted and
the periodic boundary conditions are imposed on each direction, the same square now denotes T2,
which has four time reversal invariant points.

chiralities. Even when there are some doublets at the zero energy, the number of states with
positive chirality is the same as the number of states with negative chirality:

ind i�D ≡ dim ker i�D+ − dim ker i�D− = 0,

where i�D± ≡ i�DP± with P± ≡ (1 ± �5)/2. The index of the present Dirac operator is thus
trivial. Nevertheless, the time reversal invariance (3), if combined with chiral symmetry (4),
gives an interesting invariant. Chiral symmetry (4) tells that if �k is an eigen-doublet with the
energy εk , the state defined by �−k ≡ �5�k is also an eigen-doublet with the opposite energy
−εk . Therefore, nonzero-mode states form a quartet in this sense. Suppose that we have just
one Kramers doublet at the zero energy. Then, it turns out that this doublet is stable against
perturbations with time reversal and chiral symmetries, since these two states cannot move to
nonzero energies without two more states in order to ensure both the symmetries. On the other
hand, if there are two doublets at the zero energy, they are not obliged to stay there: small
perturbations enable two of them to move to the positive energies and the other two to move
to the opposite negative energies. In more general, we can claim that evenness or oddness of
the number of the zero-mode Kramers doublets is an analytic invariant, from which we define
a Z2 index of the Dirac operator with time reversal symmetry,

ind+i�D ≡ dim ker i�D+ mod 2. (7)

Next, we define a topological invariant given by the gauge field. To this end, we must first
specify the manifold compatible with the condition (3). Let M be a compact manifold without
boundary. We assume that it can be divided into two M± such that if y ∈ M+,−y ∈ M−
except for the time reversal invariant points yj = −yj (j = 1, . . . , Ninv). The number Ninv

of such points depends on M. For example, the 2-sphere S2 has two invariant points, whereas
the 2-torus T2 has four invariant points, as illustrated in figure 2.

To define a topological invariant, it is convenient to define a gauge potential 1-form
A = −iAμ dyμ and the corresponding field strength 2-form F = dA + A2. Time reversal
invariance (2) or (6) tells that the Chern number Cd (d = 4n + 2 with n = 0, 1, . . .) vanishes:

Cd = Nd/2

∫
M

trFd/2 = 0,

where the numerical factor is Nm ≡ im/[m!(2π)m]. This is consistent with the spectral
property of the Dirac operator whose index is zero, as discussed above. This feature is quite
similar to the QSHE: the first Chern number associated with the Berry phase in the Brillouin
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zone (T2) vanishes due to time reversal symmetry. Nevertheless, the QSHE phase is the
topologically nontrivial phase which can be described by the Z2 number, as shown by Kane
et al [7, 8]. Motivated by their work, we propose that the Z2 index (7) in d = 4n + 2 is
equivalent to

Dd = Nd/2

[∫
M+

trFd/2 −
∫

∂M+

ωd−1(A)

]
, (8)

mod 2. Here, ωd−1 is the Chern–Simons (d − 1)-form which obeys trFd/2 = dωd−1(A) [17].
It should be noted that formula (8) has meaning under condition (6). This is the reason we
have adopted an unconventional Wick rotation (see footnote 2).

We must first examine the gauge dependence of Dd . Let Ag = g−1Ag + g−1 dg be
the gauge transform of A. If the time reversal invariance (6) is enforced on Ag, g should
obey g(−y) = J2g

∗(y)J−1
2 for d = 8n + 2 or g(−y) = J1g

∗(y)J−1
1 for d = 8n + 6. We

will refer to this condition as the time-reversal constraint on the gauge transformation. Let
�d−1[g] ≡ Dd [Ag] − Dd [A] be the gauge dependence of Dd . Note

ωd−1(Ag) − ωd−1(A) = ωd−1(g
−1dg) + dαd−2,

where αd−2 is a (d − 2)-form [17], which leads to

�d−1[g] = (−1)n+1i

(2π)2n+1

(2n)!

(4n + 1)!

∫
∂M+

tr(g−1dg)4n+1,

where d = 4n + 2. Let us estimate the above in the case of M = Sd (∂M+ = Sd−1) for
simplicity. Note that generic U(2N) gauge transformation g can be decomposed into U(1)×
SU(2N) such that g(y) = eiφ(y)g̃(y) where det g̃ = 1. The time reversal constraint tells
that φ(−y) = −φ(y) mod 2π . In d = 2 (i.e., n = 0), �1[g] is given by this U(1) part,
�1[g] = −N/π

∮
dφ, where line integral is over S1, namely, the equator of S2. This gives

manifestly an even integer. On the other hand, in higher dimensions, contribution from U(1)
vanishes and only the non-Abelian sector g̃ enters into �d−1; �d−1[g] = �d−1[g̃]. The
time reversal constraint tells that at the time reversal invariant points yj (j = 1, 2 on Sd−1),
g̃(yj ) ≡ h(yj ) ∈ Sp(N) for d = 8n + 2, whereas h(yj ) ∈ O(2N)5 for d = 8n + 6. First, let us
consider the former case. Assume that g̃ takes g̃0 /∈ Sp(2N) at a certain y, g̃(y) = g̃0. Then,
y cannot be yj , and the time reversal constraint ensures that at g̃(−y) = g̃0. There are thus
an even number of points on Sd−1 which are mapped to g̃0. It turns out that the degree of the
map g̃ is even, implying that the winding number, �d−1[g̃], is even. On the other hand, if one
cannot find any g̃0 /∈ Sp(N) on Sd−1, namely, if g̃(y) ∈ Sp(N) for all y,�d−1[g̃] = 0. We thus
conclude that �d−1[g] is an even integer for d = 8n + 2. The case d = 8n + 6 (n = 0, 1, . . .)

is likewise.
If the gauge potential can be smooth on the whole M+,Dd should be zero, which is a

trivial element of Z2. Now we shall show that there exists not only such a trivial element
but also a nontrivial element indeed. We assume that the u(2N) gauge potential is 2 × 2
block-diagonal. Then, the time reversal invariance (6) requires that the upper and lower u(N)
sectors of the gauge potential are not independent, given generically by the form

Aμ(y) =
(

aμ(y)

a∗
μ(−y)

)
, (9)

where aμ(y) denotes a u(N) gauge potential. In this block-diagonal case, since the upper
and lower sectors are decoupled, the Z2 index and Dd can be separately computed such that

5 In a suitable basis, τ 1 becomes diagonal τ 3. Then, we see h ∈ O(N, N , C) � O(2N , C). It thus turns out
O(2N , C) ∩ SU(2N) = O(2N).
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ind+i�D = ind+i�D↑ + ind+i�D↓ and Dd = Dd↑ + Dd↓, where arrows mean that only the upper
(↑) or lower (↓) gauge potential is taken into account. Assume that the gauge potential in the
upper sector is nontrivial, which yields a nonzero index and the Chern number. This means
that aμ(y) cannot be smooth over Sd : For simplicity, assume that we have two kinds of gauge
such that a(±)

μ (y) is regular in M±, collecting all singularities in M∓. The ordinary index
theorem6 claims that ind i�D↑ = N+ − N−, where N± is the number of the zero-mode with the
chirality ±. Now let us choose a(−)

μ (y) as the upper gauge potential. Then, equation (8) gives
Dd↑ = ind i�D↑ = N+ − N−, since in this case, a(−)

μ (y) is regular in M− and therefore,

−
∫

∂M+

ωd−1(A) =
∫

∂M−
ωd−1(A) =

∫
M−

trFd/2

holds if the lower gauge potential is neglected. Next, let us switch to the case with a lower
gauge potential only, which should be a(−)∗

μ (−y). Since this gauge potential is regular in M+,
it never contributes to equation (8); Dd↓ = 0. It thus turns out that Dd = N+ − N− holds for
the full gauge potential Aμ in equation (9). On the other hand, since i�D↓ has N∓ zero-mode
with chirality ±, i.e., ind i�D↓ = N− − N+ (see footnote 6), we reach ind+i�D = N+ + N−.
Therefore, we conclude that ind+i�D = Dd mod 2.

Let us now take into account off-diagonal elements of the gauge potential. The
singularities in the upper gauge potential may move but stay in M+ if off-diagonal elements
are small enough. Even if one of them moves into M−, its partner in the lower gauge potential
in M− moves into M+. This is due to equation (6) which ensures that if Aμ has a singularity
at y, an opposite singularity appears at −y. Therefore, Dd can change only by 2. On the
other hand, along the change of the gauge potential, the spectrum of the Dirac operator flows,
and a nonzero-mode quartet can be two zero-mode doublets and vice versa, which result in
the change of Z2 index also by 2. From the point of view of such moving singularities, the
mod 2 gauge dependence of Dd can be understood likewise. It thus turns out that Dd and the
Z2 index change by 2 and therefore coincide mod 2.

Finally, we shall exemplify a Dirac operator with a nontrivial Z2 index in d = 2. Let us
consider a Dirac operator on S2 in magnetic monopole background fields [18],

i�D(θ, φ) = iσ 1

(
∂θ +

1

2
cot θ − iAθ

)
+

iσ 2

sin θ
(∂φ − iAφ),

where 0 � θ � π and −π � φ � π are polar coordinates, Aθ and Aφ are u(2) gauge
potentials of the type (9), and the cotangent term is due to the spin connection [18]. This Dirac
operator has time reversal symmetry

T i�D(θ, φ)T −1 = i�D(π − θ,−φ),

where T = σ 1iτ 2K. Two time reversal invariant points are (θ, φ) = (π/2, 0) and (π/2, π).
For the upper gauge potential we have two well-known possibilities,

a
(±)
φ (θ) = m

2
(±1 − cos θ),

and aθ = 0, where a
(±)
φ is the charge-m monopole potential with a singularity at the south

and the north poles, respectively. From equation (9) it follows that the lower potential should
be a

(±)∗
φ (π − θ) = −a

(∓)
φ (θ), telling that it denotes a monopole with the opposite charge and

with the singularity at the opposite pole.
Assume m � 0 and choose a

(−)
φ as the upper gauge potential. Then, i�D↑ gives just m

zero modes with chirality +, whereas i�D↓ gives the same m zero modes but with chirality −.

6 Note that i�D↑ is not invariant under time reversal: it obeys T i�D↑(y)T −1 = i�D↓(y).
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On the other hand, we see Dd↑ = m and Dd↓ = 0. Therefore, for this decoupled model and
the present gauge fixing, the Z2 index and D2 coincide, ind+i�D = m = D2. However, as
discussed, these can change by 2 by gauge transformations and/or deformation of the gauge
potential, and generically coincide modulo 2.
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